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Natural vision is a dynamic and continuous process. Under natural
conditions, visual object recognition typically involves continuous
interactions between ocular motion and visual contrasts, resulting
in dynamic retinal activations. In order to identify the dynamic
variables that participate in this process and are relevant for image
recognition, we used a set of images that are just above and below
the human recognition threshold and whose recognition typically
requires >2 s of viewing. We recorded eye movements of partici-
pants while attempting to recognize these images within trials last-
ing 3 s. We then assessed the activation dynamics of retinal ganglion
cells resulting from ocular dynamics using a computational model.
We found that while the saccadic rate was similar between recog-
nized and unrecognized trials, the fixational ocular speed was signif-
icantly larger for unrecognized trials. Interestingly, however, retinal
activation level was significantly lower during these unrecognized
trials. We used retinal activation patterns and oculomotor parame-
ters of each fixation to train a binary classifier, classifying recognized
from unrecognized trials. Only retinal activation patterns could pre-
dict recognition, reaching 80% correct classifications on the fourth
fixation (on average, ∼2.5 s from trial onset). We thus conclude that
the information that is relevant for visual perception is embedded in
the dynamic interactions between the oculomotor sequence and the
image. Hence, our results suggest that ocular dynamics play an im-
portant role in recognition and that understanding the dynamics of
retinal activation is crucial for understanding natural vision.

active vision | eye movements | fixational drift | closed-loop perception |
neural code

The mechanisms underlying visual acquisition are not yet un-
derstood. In natural conditions, humans perceive the world

around them using continuous eye movements. Yet, the relevance
of ocular dynamics to visual perception, and specifically to object
recognition, is not known. One factor that supports irrelevance is
the success of artificial algorithms for visual recognition that are
based on static image snapshots (1–6), therefore ignoring ocular
dynamics while preserving the similarity to other biological pro-
cesses (7–13). Yet, importantly, artificial algorithms have been
tested so far only on a limited set of perceptual tasks and suffer
from yet unresolved difficulties (e.g., refs. 14 and 15). Given this
gap, we have designed experiments to test the role of ocular dy-
namics in human visual recognition.
Traditionally, object recognition has been tested in the labora-

tory using briefly presented, flashed images. With flashed images,
answering the question of whether eye movements are involved in
object recognition, and how, is challenging. In the current study,
we used a set of images whose recognition was shown to require
continuous looking. This set is composed of MIRC (minimal
recognizable configurations) images and subMIRC images (14). A
MIRC is defined as an image patch that can be reliably recognized
by human observers and which is minimal in that further reduction
in either size or resolution makes the patch typically unrecogniz-
able. A subMIRC is thus defined as an image patch created by a
further minimal reduction in either size or resolution of a MIRC,
rendering it typically unrecognizable (see details and the full set of
images in SI Appendix, Fig. S1). The original MIRC study showed

that human recognition could not be replicated by any visual
recognition algorithm (14). Importantly for the current context, it
was shown that recognizing these partial images takes time, typi-
cally over 2 s (16). This is in contrast to the recognition of full
images, which is accomplished within short presentation times of
typically less than 300 ms (17). In our experiments, we presented
relatively small images (3 × 3 degrees in size), which can be
captured almost entirely by the foveal region of the retina and
whose perception, thus, should not depend on integrating several
foveal foci.
As the eyes are never still, when we continuously look at an

image, the flow of visual information to our brains results from
the interaction of eye movements with the image (18–24). The
kinematics of eye movements have been studied extensively.
Studies show that from the point of view of motion kinematics,
almost every section of ocular trajectory can be classified as a
saccade or a fixational period in which the latter is dominated by
drift motions (13, 18, 25–31). According to this kinematic classi-
fication, fixation on a moving target, such as during smooth pursuit
or optokinetic response, is considered a fixational period. Saccades
and fixations have been suggested to be controlled differently and
to play different roles in visual perception (21–23, 25–29, 32, 33).
Yet, both have been implicated as potentially playing major roles
in visual acquisition, which makes them candidates for contributing
to the process enabling the recognition of MIRC images.
The relatively long duration of MIRC recognition allows a

prolonged iterative process, possibly combining bottom-up and
top-down components of the visual system (34–36) as well as
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controlling oculo-retinal dynamics (37, 38), that is, the dynamics
that link ocular motion and retinal activations via closed-loop
interactions. Oculo-retinal dynamics is dictated primarily by oc-
ular dynamics, image properties, and retinal filtering. In our
experiments, image properties were given, ocular dynamics was
recorded, and retinal filtering was modeled using commonly
accepted retinal models (39, 40). We tested whether we could
predict recognition and, if possible, recognition timing using the
trial-by-trial modeled retinal output. We found that, indeed,
oculo-retinal dynamics can account for the behavioral charac-
teristics of MIRC recognition.

Results
Relevance of Eye Movements to Recognition. A total of 20 healthy
participants participated in three experimental sessions, 10 trials
in each. Across the sessions, each participant viewed three ver-
sions of each of 10 images: full, MIRC, and subMIRC (see
Methods). In each trial, participants viewed the image version for
3 s and then shifted their gaze to a location indicating whether
they did or did not recognize the object shown in the image.
The full images were recognized at 100% of the trials as

expected (Fig. 1A, black). The recognition rates of MIRCs (80 ±
4%) and subMIRCs (24 ± 4%) seen by participants for the first
time (Fig. 1A, blue and red, respectively) replicated the behavioral
results reported previously (14). The MIRC–subMIRC recogni-
tion gap was also evident for the individual images; for nine out of
10 pairs of image versions, there was a >50% difference in the
recognition rate (SI Appendix, Fig. S2). As may be expected from
the fact that our images were presented in a relatively small size,
we did not find any tendency to gaze at specific image coordinates
and did not find any difference between the distributions of gaze
locations in trials in which the image was recognized or not (we
have created visit-rate heat maps for all trials of each image and
found the 5, 10, and 20% most-visited regions of interest [ROIs]).
MIRCs maps did not have significantly more visited ROIs than
subMIRC maps (permutation tests, all Ps > 0.05).
To test whether the scanning eye movements are necessary for

the recognition of MIRCs, we ran two pilot sessions, each with five
participants viewing the set of 10 MIRCs. We prevented the scan-
ning of the images by either stabilizing the image on the retina (see

Methods; five participants) or by instructing participants to fixate on
a fixational cross at the center of the image (five participants). The
recognition rates in these cases dropped to 30 ± 8% and 32 ± 5%,
respectively (Fig. 1A, dark blue). These results revealed the im-
portance of scanning eye movements for recognizing MIRCs.
The question we ask here is: Can we find acquisition variables

that correlate with single trial recognition? So far, such variables
could not be found in the images themselves; first, the same im-
ages are sometimes recognized and sometimes not by the different
subjects. Second, no computer-based classifier was found so far to
discriminate between MIRCs and subMIRCs (14, 41). We thus
turned to look at the other major components of the acquisition
process—ocular kinematics and retinal activation. For this aim, we
pulled together all trials of partial images, including both the
MIRC and the subMIRC session for each participant (see Meth-
ods), and classified them according to recognition. Altogether,
there were 251 trials in which a partial image was recognized
(“recognized trials”) and 149 trials in which a partial image was
not recognized (“unrecognized trials”; Fig. 1B).

Ocular Kinematics. To analyze ocular kinematics, each 3-s scan-
ning pattern was divided into saccade and fixation periods (see
Methods). We compared the kinematic behavior measured dur-
ing recognized and unrecognized trials (e.g., Fig. 2 A and B). The
saccadic rate was not significantly different between recognized
and unrecognized trials (P > 0.2, two-tailed Student’s t test, Fig. 2C).
Accordingly, when comparing the mean fixation duration, no differ-
ence was found between the groups (P > 0.2, Kolmogorov–Smirnov
[KS] test, Fig. 2D). In contrast, the mean drift speed and amplitude
during fixation were higher for unrecognized trials (P < 0.05, KS test,
Fig. 2 E and F). This is consistent with other cases in which chal-
lenging visual conditions induce an increase in the fixation drift speed
(32). We have verified, as was done in ref. 32, that the changes we
observed in the mean drift speed could not be explained by differ-
ences in saccadic kinematics. Specifically, no significant difference
was found in saccadic amplitude, saccadic speed, saccadic peak
speed, or saccadic duration between the two sets of trials. Note, that
in order not to lose temporal information, the ocular speeds were
computed here with minimal low-pass filtering (32) (see Methods).
While precluding a direct comparison of absolute speed values with

BA

Fig. 1. Recognition rates. (A) Mean recognition rates for the two pilot sessions and three experimental sessions. In the pilot sessions (dark blue), five par-
ticipants in each session viewed 10 MIRCs, either while the images were stabilized on the retina using real-time gaze following or while fixating on a cross in
the center of the images. In the experimental sessions, subMIRC (red) and MIRC (blue) recognition rates were calculated only for the first time participants
viewed each image (whether in its subMIRC or MIRC version), replicating the behavioral results reported in ref. 14 (10 participants × 10 trials for each of the
partial images; all 20 participants × 10 trials for the full images). Error bars represent the SEMs. (B) Total number of recognized and unrecognized trials, of all
trials of partial images (20 participants × 20 trials), divided to those with subMIRCs (red) and MIRCs (blue).
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studies that used substantial low-pass filtering, the minimal filtering
used here did not impair direct comparisons of ocular speed values
between different conditions in the present study (32).

Retinal Activation. Eye movements induce dynamic retinal coding
(23, 39, 40, 42–44). In order to evaluate the difference in visual
acquisition between different trials, we created a dynamical model
describing the visual acquisition process. The model assumes that
the output of the retina is determined by the spatiotemporal in-
teractions between the stationary (for 3 s) image and the

continuous ocular motion (Fig. 3A). We modeled the activations
of retinal ganglion cells (RGCs) using commonly accepted spa-
tiotemporal filters (see Methods and Fig. 3A) and assessed their
informative value. We removed redundant activation patterns (45)
and then used only those modeled RGCs (mRGCs) whose cor-
relation with the mean mRGC activation was <0.5 (termed in-
formative mRGC, see Methods and the example in Fig. 3B).

Acquisition Dynamics. Consistent with previous reports (32, 46), the
mean speed of the eye changed during the fixational pause, starting

BA

C D

E F

Fig. 2. Motor parameters. (A) Example of a scanning path of a recognizedMIRC of an eagle. Identified saccades (dark blue) and fixation periods (light blue). (B) Same
as A for an unrecognized trial of a different participant viewing the same eagle MIRC. (C) Mean number of saccades per seconds for recognized (blue) and un-
recognized (red) trials, error bars represent the SEs, no significant difference was found (P > 0.05, two-tailed Student’s t test). (D) Mean inter saccadic interval
(i.e., fixation duration) per fixation number (sequential from trial onset) for recognized (blue) and unrecognized (red) trials. Error bars represent SEs. No significant
difference was found (P > 0.1, KS test). The blue and red horizontal bars above the curves denote the mean ± STD number of fixations in a trial. (E) Same as D for
mean drift speed (P < 0.05, KS test). (F) Same asD for mean drift amplitude (P < 0.05, KS test). *, indicates a significant difference between the compared distributions.
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with relatively high speeds and converging to a lower, steady-state
speed (Fig. 3C). Consistent with the increase in the mean speed of
the eye during fixation in unrecognized trials (Fig. 2E), the steady-
state (“target,” see Methods) speed that the eye converged to
within each fixational pause was higher for unrecognized trials (for
t > 100 ms, P < 0.05, KS test, Fig. 3C). In contrast, our retinal
model revealed that the mean retinal activation was higher for
recognized trials (P < 0.05, KS test; Fig. 3D). And similar to the
dynamics of ocular speed, also the within-pause ongoing activation
of the retina converged to more or less steady target values, with
the target value for recognized trials being larger than that for
unrecognized trials (for t > 100 ms, P < 0.05, KS test, Fig. 3E). The
ongoing retinal activation described in this paper is the residual
activation after subtracting the mean retinal activation (see Meth-
ods). This subtraction results in an initial dip (Fig. 3E), reflecting
the dynamics of the temporal filter applied (Fig. 3A and Methods).

Acquisition Correlates of Recognition. As shown above, both ocular
speeds and retinal activations exhibited differences in their

dynamics during recognized and unrecognized trials. To test
whether any of these dynamic variables can predict image recog-
nition, we trained a binary support vector machine (SVM) clas-
sifier using the different variables and tested it using a
leave-one-out method (see Methods). Training the SVM using
the instantaneous activation of the retina (vectors of the ongoing
mean activation values sampled at 125 Hz along each fixational
pause, e.g., Fig. 3B, black curve), resulted in classifying correctly
0.81 ± 0.02 of the trials (Fig. 4A, blueish curve). Specifically, this
highest percent of correct classifications was achieved when
training the model on the fourth fixation data (though it was also
above chance level for the first, sixth, and seventh fixations).
Similar results were obtained when using an alternative repre-
sentation of retinal activation, a representation based on the ei-
genvectors of a functional principal component analysis [FPCA
(47), seeMethods]. Classifying these representations also yielded a
fixation-dependent performance, with the first and fourth fixations
yielding the highest success levels (0.61 ± 0.02 and 0.56 ± 0.01,
respectively).
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Fig. 3. The retinal model and visual acquisition parameters. (A) A schematic diagram of the retinal model: zoom in to a scanning path of an example trial; the
retinal mosaic following the eye’s trajectory (note the increasing receptive fields sizes when moving away from the center); the temporal filter used for each
cell. For spatial and temporal aspects of the retinal model, seeMethods. (B) Activation dynamics of the modeled cells during a fixational pause in the example
trial. (Upper) A total of 47,994 unique activations (out of ∼160,000; seeMethods). The mean activation is shown in black. (Lower) A total of 2,861 uncorrelated
activations (see Methods). Mean activation, which is now defined as Retinal Activation, is shown in black. (C) The convergence of within-pause instantaneous
fixation (drift) speeds, averaged across all fixations (that lasted over 100 ms) from recognized (blue) and unrecognized (red) trials (target speeds are the mean
speeds for t > 100 ms, P < 0.05, KS test). (D) Mean retinal activation per fixation number, averaged across all fixations from recognized (blue) and unrec-
ognized (red) trials (P < 0.05, KS test). (E) Same as C for the within-pause instantaneous retinal activation (target activations, t > 100 ms, P < 0.05, KS test). *,
indicates a significant difference between the compared distributions; AU, arbitrary units.
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In contrast to the success in classifying retinal activations, the
use of instantaneous speed (vectors of the ongoing ocular speed
values sampled at 125 Hz along each fixational pause) resulted in
a chance-level classification for all fixations (Fig. 4A, red curve).
Similarly, the use of mean speed per fixation or mean activation
per fixation (vectors of the mean values of either activation or
speed per fixation), variables that exhibited significantly different
values between recognized and unrecognized trials (Figs. 2E and
3D), also resulted in a chance-level classification (Fig. 4B).
Hence, the only variable that was predictive of visual recognition
in a trial was the modeled retinal activation.
The modeled retinal activation reflected the spatiotemporally

filtered versions of the dynamic interactions between ocular mo-
tion and the image. As such, it makes use of more information
than the ocular motion alone. To test whether the modeled retinal
activation allowed better classification merely due to its larger

number of information sources (ocular + image versus ocular
alone), we created artificially mixed activations, which maintained
the number of information sources without the exact motor–
sensory interactions (Fig. 4C). Thus, we computed the activations
that could be generated when taking the ocular movement from
one trial and the image from another and used them to train the
SVM. These shuffled interactions resulted in a chance-level clas-
sification (Fig. 4C, orange, shuffling within the recognized/unrec-
ognized groups; purple, shuffling between the groups). We further
tested whether the specific dynamics within a fixation pause is
crucial for the classification. To achieve this, we shuffled the
movements within each pause and calculated the new activations
thus created (seeMethods and Fig. 4C, green curve). This shuffling
achieved above chance-level classification (highest for the second
fixation, which resulted in classifying correctly 0.57 ± 0.02 of
the trials), which means that the general oculo-retinal dynamics

A

B C

D E

Fig. 4. SVM classification. (A) Percent of correct classifications of a binary SVM classifier trained in a leave-one-out method to classify recognized from
unrecognized trials. The SVM was trained on the within-pause instantaneous retinal cell activations (turquoise, Fig. 3E) and on the within-pause instanta-
neous fixation speeds (red, Fig. 3C), each training per fixation number. Error bars represent SEs between 10 repetitions of the training (see Methods). (B) The
SVM was trained on the mean per fixation retinal cells activation along the trial (turquoise, Fig. 3D) and on the mean per fixation speeds along the trial (red,
Fig. 2E). Error bars represent SEs between 10 repetitions of the training (seeMethods). (C) Same as A, the SVM was trained on the within-pause instantaneous
retinal cells activations using artificially mixed trials. Mixing movements within trials (green, see Methods), mixing movements and images between the two
classes (purple), and mixing movements and images within the two classes (orange). (D) Same as A, the SVM was trained on different durations of activations
along each trial with 80-ms lags in starting times, ignoring the classification to saccades and fixations (time windows of −200 ms in orange, 400 ms in purple,
800 ms in green). (E) Same as A, the SVM was trained on all retinal cell activations per “frame,” a specific point in time, either the end of fixation (purple), the
beginning of fixation (orange), or an average frame of the entire fixation (green).
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within each fixation pause was also slightly predictive of visual
recognition.
We further checked whether we could predict recognition using

the ongoing activations of the retina, ignoring the separation to
fixational pauses. We computed the ongoing activation of the
retina during each full 3-s trial and trained the SVM using the ac-
tivations of different time windows along the entire trial, without
preclassifying it to saccades and fixations. The biological separation
to individual pauses was found important, as this training also
resulted in a chance-level classification for all window sizes and
starting times used (Fig. 4D). Finally, we also controlled for the
possibility that saccade-triggered activations, and not the ongoing
activations generated along the entire fixational pause, are sufficient
for the recognition based classification. To test that, we trained the
SVM using the entire retinal activation (400 × 400 “frame”) gen-
erated when landing on a new saccadic target (Fig. 4E, orange) or
just before leaving that target (Fig. 4E, purple). We also checked
whether the mean “frame” of a fixational pause can be used as a
predictor (Fig. 4E, green). Similar to all previous controls, these
saccadic snapshot based trainings were not successful (Fig. 4E).

Discussion
In this work, we demonstrate that correlates of visual recognition
can be found in the dynamic sensory activations that result from
fine ocular motor–sensory interactions. Using MIRC and sub-
MIRC images (14), which were found to be just above and below
human recognition thresholds, respectively, we showed that
recognition could be accounted for by the dynamics of retina-like
activations resulting from continuous motor–sensory (oculo-retinal)
visual interactions. These interactions were modeled here as the
convolutions between eye movements, image contrasts, and retinal
spatiotemporal filters. This result stands in contrast to the inability
of previous attempts to find such correlates based on image con-
trasts alone (14).
We first replicated, using 20 participants, the recognition rates

reported in the original MIRC study, which used thousands of
subjects (14) (Fig. 1A), demonstrating the robustness of this
threshold phenomena. Then, as we were interested in recognition
correlates, we pulled together all trials and classified them by their
recognition reports (Fig. 1B). Comparing the oculomotor variables
revealed that while the saccadic rate (and hence also the mean
durations of fixational pauses, Fig. 2 C and D) were similar for
recognized and unrecognized trials, the mean ocular speed within
the fixational pauses (and thus also the amplitude of the pause)
were lower for recognized trials (Fig. 2 E and F). Thus, while the
task difficulty (48) and the images were similar, scanning dynamics
differed between recognized and unrecognized trials.
In order to assess the possible effect of these differences in

ocular dynamics on visual processing and visual recognition, we
used a dynamical model for retinal activation (39, 40) that con-
volves ocular motion with external images and retinal filtering
(Fig. 3A). Our model integrates the moment-to-moment retinal
motion, and not just its statistics (40, 44), as an informative feature
to be used by the visual system. Our results show that predicting
recognition in a trial-by-trial manner was achievable only using
these modeled dynamics of retinal activations within each fixational
pause (Fig. 4A). Neither the images alone (14) nor the oculomotor
variables alone (Fig. 4 B and C) could predict recognition.
The model we used consisted of identical retinal-like cells,

differing only in their receptive field locations and sizes. This is
of course valid only as a first approximation, as the human retina
is known to possess different kinds of cells (49, 50). Nevertheless,
for the purpose of the current work, which is testing the de-
pendence of visual recognition on motor–sensory dynamics, the
use of a single-cell type proved to be sufficient (40, 51, 52).
Our results suggest that visual perception is based on the

continuous activation of retinal cells during each entire fixational
pause (26, 32, 53–56). Alternatively, visual perception might be

based primarily on snapshots of retinal activations that are induced
by each postsaccadic landing (57–60). We thus tested the possibility
that saccade-triggered activations are sufficient for recognition
detection. This alternative failed in predicting visual recognition in
our task (Fig. 4E). Another alternative to the use of the continuous
activation during fixational pauses is that the visual system only uses
the statistics of fixational eye movements (40). To test this alter-
native, we tried to predict recognition based on shuffled data,
detaching the specific movements from the image they were orig-
inally scanning; this attempt failed as well (Fig. 4C).
Thus, at least in our task, only the entire activation patterns

during fixational pauses could account for recognition. The next
question we asked was: Is the separation to individual pauses
crucial? Could the visual system simply process the entire retinal
dynamics along an entire trial continuously, ignoring the separa-
tion to individual fixational pauses? The answer was negative—
applying our dynamical model continuously throughout the trials,
ignoring the saccades-fixations classification, resulted in a chance-
level classification as well (Fig. 4D). This finding provides a pos-
sible function for the well-known peri-saccadic suppression phe-
nomenon (61, 62); resetting the activity in some circuits of the
visual system around saccades (63) may facilitate the processing of
oculo-retinal interactions in the new fixational location. At the
system level, this result supports a functional separation between
motor–sensory-motor loops controlling the saccades and those
controlling the ocular drift (33). Furthermore, since we model
here only foveal activations, the resetting suggestion may not be
relevant to circuits processing peripheral vision, circuits that are
capable of fast postsaccadic reaction (64).
Two aspects of our results call for further theoretical and em-

pirical explorations. First, while showing that the modeled dynamics
of retinal activations can predict visual recognition with high ac-
curacy, our data cannot provide insights about the actual dynamical
representations of the images, about the differences between rec-
ognizable and unrecognizable dynamics, or about the necessity of a
separate reafferent coding channel (51, 52) for image identification.
Second, we showed that the recognition potential was maximized at
the fourth fixational pause. This result is consistent with the indi-
cations, in other mammals, that perceptual convergence takes about
four motor–sensory interaction cycles (65–67) as well as with the
typical recognition time in previous MIRC experiments (16). Yet,
the mechanism underlying such convergence is not yet known. The
explorations of these intriguing aspects require targeted empirical
designs. Importantly, the consistency of our correlation-based and
FPCA-based methods (see Results) together with the independence
of the percent of informative retinal cells on the fixation number
when using our correlation-based method (SI Appendix, Fig. S3)
suggest that the fluctuations in success level across fixations along
the trial reflect a dynamical, closed-loop process whose controlled
variables (32, 37, 68) include visual information.
Our results were obtained with near-threshold stimuli. Yet,

their conclusions are valid for all forms of natural vision. Specif-
ically, these results suggest that computational models of primate
vision should take into account, and be tested against, dynamic
retinal outputs—the outputs dictated by the interactions between
eye movements and external images. Our own hypothesis is that
visual recognition results from a closed-loop convergence process
(32, 37). The convergence dynamics exhibited by our data seem to
divide to two levels: at a lower-level, a drift-based process that
converges within each individual fixational pause, and at a higher-
level, a saccade-based process that converges within approximately
four saccades. Our results further suggest that the recognition
potential does not increase monotonically across saccades. Rather,
it starts on average with a positive potential that then decreases to
chance level before reaching its maximum during a later (in this
case the fourth) fixation. While the mechanism underlying the
nonmonotonous behavior of recognition potential along this
process is not yet clear, we suggest that it is part of a circular
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process attempting to coordinate neuronal and ocular processes
and speculate that the drop of this potential after the fourth fix-
ation reflects the loss of such coordination after the perceptual
decision was made.

Methods
Participants. A total of 30 healthy participants with normal vision at the ages
23 to 36 y old (13 males) participated in either a pilot experiment session (five
in each of the two conditions) or in three experimental sessions (10 in each of
the two conditions). All participants were given a full and detailed expla-
nation about the eye tracker device and the behavioral task andwere paid for
their participation (50 Israeli new shekel, ∼12 US dollars, per hour). Informed
written consents were obtained from all participants in accordance with the
approval of the Institutional Review Board of the Weizmann Institute of
Science for this project.

Experimental Setup. The experiment took place in a darkened and quiet room
where subjects sat in front of a high-resolution, fast computer screen (VPixx,
1920 × 1080, 120 Hz). The movements of the dominant eye were recorded
using EyeLink II at 250 Hz [which is sufficient for tracking drift eye move-
ments (69)]. Subjects sat 1 m away from the screen and placed their chin on a
chinrest to reduce head movements.

Stimuli Used. Three versions of each image were used: car door, bicycle, eagle,
glasses, eye, fly, horse, airplane, ship, and suit. Each image had a full image
version, aMIRC version (which was found to be recognized inmost trials), and
a subMIRC version (which was found to be recognized in minimum 50% less
trials than its MIRC). All images were taken from ref. 14. Following this study,
we have also verified that the difference in recognition between the MIRC
versions and the subMIRC versions cannot be explained by simple image
parameters (no significant difference was found between the groups; SI
Appendix, Fig. S4).

Experimental Design. The experiments took place in a darkened and quiet
room where subjects sat in front of a high-resolution, fast computer screen
(VPixx, 1920 × 1080, 120 Hz). In the pilot session, each condition had 10 trials,
showing each of the MIRC versions of the images. In the first condition, the
image was stabilized on the retina using a gaze-contingent display with
which the image was locked to the participant’s gaze [update rate was
100 Hz (26, 32)]. In the second condition, a fixation cross was displayed at the
center of each image, and the participants were instructed to fixate on it
throughout the trial. In each trial, participants clicked to start, fixated on a
fixation cross for 2 s, viewed an image for 3 s, and then chose a “YES/NO”

answer by shifting their gaze on the screen, reporting whether they did or
did not recognize the object in the image. Each experimental condition had
three sessions, 10 trials in each. The two different experimental conditions
differed in the order of the sessions. Condition 1: subMIRCs, MIRCs, full
images. Condition 2: MIRCs, full images, subMIRCs. All images were 3 × 3
visual degrees. In order to validate correct object recognition, each partici-
pant was asked, after the session, to report all objects that he/she remem-
bers. No participant reported any false object name (we have considered the
following answers as correct ones: bird = eagle, tie = suit).

Eye-Movement Processing. A velocity-based algorithm (modified from ref. 70)
was used for detecting all saccades and fixations. We used the following
threshold parameters for saccade detection: 16 deg/s minimal peak velocity
and 0.3 deg minimal amplitude. Each detected saccade and each fixation
pause were visually examined to verify the quality of saccadic detection.
Fixation periods between saccades were analyzed only if they lasted at least
30 ms. For the analysis of within-pause instantaneous speed, only fixation
periods that lasted at least 100 ms were used. The instantaneous fixation
speed was calculated as the derivative of the raw eye position signal (32) and
smoothed using a moving window of three samples (12 ms). The target
speed for each fixation was defined as the mean of the speed between
100 ms and end of pause.

Retinal Model.We built a model of a 3 × 3 visual degrees retina that consisted
of 400 × 400 cells based on the spatial properties of a typical human retina
(39) and the commonly assumed spatiotemporal filtering properties of fo-
veal neurons (40, 52, 71). For estimating the number of cells, we assumed a
linear increase in the spacing between them, starting from 0.5 arcmin at the
fovea, up to 1.6 arcmin at 4° eccentricity as well as a corresponding linear

increase in receptive field diameters. Thus, for each modeled cell, we de-
fined the size of its receptive field (RF) as the number of pixels that it is
sensitive to, depending on its distance from the center of the gaze. We then
used the following temporal filtering (40) (Fig. 3A) to calculate each cell
activation:

activationi = RFi grayScale value⊗
tn

T1
n+1e

− t
T1 − R

tn

T2
n+1e

− t
T2( ),

with T1 = 5 ms, T2 = 15 ms, n = 3, R = 0.8, and t from −100 ms till the
current time.

The gain of each element is determined by the first term in the right-hand
side of the activation equation. This term (RFi grayScale value) reflects the
mean gray scale value of the pixels contained in the RF. This value is then
being convolved with the time filter (second term in the right-hand side of
the equation, see also Fig. 3A).

Following previous modeling efforts (40, 52), we thus model foveal RGCs
with a significant biphasic temporal filter (71) and without surround com-
ponents (72). This model is a generic one, likely not fully matching specific
individual RGCs while primarily capturing the generic pattern of their tem-
poral dynamics. For each trial, we moved this array of retinal cells across the
presented image according to the ocular trajectory recorded at that trial
(down sampled to 125 Hz). This resulted in activation dynamics for each of
the 400 × 400 cells, composing together a 3 s “movie” describing the
modeled retinal activation during a trial. Unless mentioned otherwise, the
model assumed a reset of retinal activation following each saccade.
Assessment of retinal information. Retinal activations are often highly redun-
dant (45). In order to avoid the overdominance of specific retinal patterns,
we applied the following selection of cells for processing. First, we used only
unique activations (i.e., when exact duplicates of cell activations were found
across the retina, only one of them was used). Second, we used only acti-
vations whose Pearson correlation with the mean retinal activation of all
cells along the trial was <0.5 (choosing 0.5 as a threshold enabled using 5%
of the cells on average; SI Appendix, Fig. S3. Other threshold choices resulted
in a similar distribution of informative cells along the trial (SI Appendix, Fig.
S3). Third, we subtracted the mean activation pattern from each activation
pattern (Fig. 3B). The target activation for each fixation was defined simi-
larly to the target speed as the mean activation of the eye between 100 ms
after pause onset and the end of the pause.
FPCA. Retinal information was also assessed as the first principal component
of an FPCA transformation (47) of all unique retinal activations for each
fixation. Briefly, FPCA projects functional data to an eigenfunction basis that
explains more variation than any other basis expansion. We used the MATLAB
implementation FPCA.m taken from the Principal Analysis by Conditional Ex-
pectation (PACE) package.

SVM Classification. For classification, we trained and tested a binary SVM
using MATLAB implementations “fitcsvm.m” and “predict.m.” The two
possible classes were “recognized” and “unrecognized,” For each feature
(speed, activations, frames, etc.), we used a leave-two-out method (one out
from each class) and computed the percent of correct classifications. We
used three types of kernels (linear, Fourier, and Gaussian) and present the
results of the most successful one, the linear kernel. As the “recognized”
class was larger, we ran 10 repetitions of the leave-two-out process, each
time using a different subgroup of the smaller “unrecognized” class. Error
bars in the figure represent the SE between these repetitions. For the
shuffled controls, the same process was done using the artificial activation
created by using movements from one trial with image from another. To
create shuffling within a trial, we computed the derivative of the eye
movement along each pause (i.e., the instantaneous speed). We then shuf-
fled this vector of speeds and computed the activation created by this arti-
ficial movement (which only preserved the statistical properties of the
natural speeds and not those of the natural accelerations or those of the
power spectrum in general). For the saccadic-based control, we trained
the SVM using a full “frame” of activations (400 × 400 cell activations at a
specific time). For the saccadic-based frame at the beginning of a fixation,
we used the activation frame at the second time sample after a saccade. For
the frame at the end of a fixation, we used the activation frame at the one
before last time sample before a saccade. For a mean frame, we calculated
the mean activations of the entire fixation pause.

Data Availability. Anonymized MATLAB code data have been deposited in
GitHub (https://github.com/lirongruber/Oculo-retinal-dynamics-can-explain-
the-perception-of-minimal-recognizable-configurations).
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